Metrics
Classes:
Name | Description |
---|---|
ConfusionMatrix |
Result object returned by |
Functions:
Name | Description |
---|---|
adverse_impact_ratio |
Computes the Adverse Impact Ratio (AIR), which is the ratio of negative |
adverse_impact_ratio_at_thresholds |
Computes the Adverse Impact Ratio (AIR) at each threshold of |
average_precision |
Computes Average Precision. |
brier_loss |
Computes the Brier loss (smaller is better). The Brier loss measures the mean |
confusion_matrix |
Computes confusion matrix metrics (TP, FP, TN, FN, TPR, Fbeta, etc.). |
confusion_matrix_at_thresholds |
Computes the confusion matrix at each threshold. When the |
max_ks |
Performs the two-sample Kolmogorov-Smirnov test on the predicted scores of the |
mean |
Computes the mean of the input array. |
mean_squared_error |
Computes Mean Squared Error (MSE) as |
predicted_positive_ratio_at_thresholds |
Computes the Predicted Positive Ratio (PPR) at each threshold, where the PPR is |
r2 |
Computes R2 as |
roc_auc |
Computes Area Under the Receiver Operating Characteristic Curve. |
root_mean_squared_error |
Computes Root Mean Squared Error (RMSE) as |
ConfusionMatrix
dataclass
Result object returned by rapidstats.metrics.confusion_matrix
Attributes:
Name | Type | Description |
---|---|---|
tn |
float
|
↑Count of True Negatives; y_true == False and y_pred == False |
fp |
float
|
↓Count of False Positives; y_true == False and y_pred == True |
fn |
float
|
↓Count of False Negatives; y_true == True and y_pred == False |
tp |
float
|
↑Count of True Positives; y_true == True, y_pred == True |
tpr |
float
|
↑True Positive Rate, Recall, Sensitivity; Probability that an actual positive will be predicted positive; \( \frac{TP}{TP + FN} \) |
fpr |
float
|
↓False Positive Rate, Type I Error; Probability that an actual negative will be predicted positive; \( \frac{FP}{FP + TN} \) |
fnr |
float
|
↓False Negative Rate, Type II Error; Probability an actual positive will be predicted negative; \( \frac{FN}{TP + FN} \) |
tnr |
float
|
↑True Negative Rate, Specificity; Probability an actual negative will be predicted negative; \( \frac{TN}{FP + TN} \) |
prevalence |
float
|
Prevalence; Proportion of positive classes; \( \frac{TP + FN}{TN + FP + FN + TP} \) |
prevalence_threshold |
float
|
Prevalence Threshold; \( \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR} \) |
informedness |
float
|
↑Informedness, Youden's J; \( TPR + TNR - 1 \) |
precision |
float
|
↑Precision, Positive Predicted Value (PPV); Probability a predicted positive was actually correct; \( \frac{TP}{TP + FP} \) |
false_omission_rate |
float
|
↓False Omission Rate (FOR); Proportion of predicted negatives that were wrong \( \frac{FN}{FN + TN} \) |
plr |
float
|
↑Positive Likelihood Ratio, LR+; \( \frac{TPR}{FPR} \) |
nlr |
float
|
Negative Likelihood Ratio, LR-; \( \frac{FNR}{TNR} \) |
acc |
float
|
↑Accuracy (ACC); Probability of a correct prediction; \( \frac{TP + TN}{TN + FP + FN + TP} \) |
balanced_accuracy |
float
|
↑Balanced Accuracy (BA); \( \frac{TP + TN}{2} \) |
fbeta |
float
|
↑\( F_{\beta} \); Harmonic mean of Precision and Recall; \( \frac{(1 + \beta)^2 \times PPV \times TPR}{(\beta^2 \times PPV) + TPR} \) |
folkes_mallows_index |
float
|
↑Folkes Mallows Index (FM); \( \sqrt{PPV \times TPR} \) |
mcc |
float
|
↑Matthew Correlation Coefficient (MCC), Yule Phi Coefficient; \( \sqrt{TPR \times TNR \times PPV \times NPV} - \sqrt{FNR \times FPR \times FOR \times FDR} \) |
threat_score |
float
|
↑Threat Score (TS), Critical Success Index (CSI), Jaccard Index; \( \frac{TP}{TP + FN + FP} \) |
markedness |
float
|
Markedness (MP), deltaP; \( PPV + NPV - 1 \) |
fdr |
float
|
↓False Discovery Rate, Proportion of predicted positives that are wrong; \( \frac{FP}{TP + FP} \) |
↑npv |
float
|
Negative Predictive Value; Proportion of predicted negatives that are correct; \( \frac{TN}{FN + TN} \) |
dor |
float
|
Diagnostic Odds Ratio; \( \frac{LR+}{LR-} \) |
ppr |
float
|
Predicted Positive Ratio; Proportion that are predicted positive; \( \frac{TP + FP}{TN + FP + FN + TP} \) |
pnr |
float
|
Predicted Negative Ratio; Proportion that are predicted negative; \( \frac{TN + FN}{TN + FP + FN + TP} \) |
Methods:
Name | Description |
---|---|
to_polars |
Convert the dataclass to a long Polars DataFrame with columns |
Source code in python/rapidstats/metrics.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
to_polars()
Convert the dataclass to a long Polars DataFrame with columns metric
and
value
.
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with columns |
Source code in python/rapidstats/metrics.py
161 162 163 164 165 166 167 168 169 170 171 172 |
|
adverse_impact_ratio(y_pred, protected, control, sample_weight=None)
Computes the Adverse Impact Ratio (AIR), which is the ratio of negative predictions for the protected class and the control class. The ideal ratio is 1. For example, in an underwriting context, this means that the model is equally as likely to approve protected applicants as it is unprotected applicants, given that the model score is probability of bad.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_pred
|
ArrayLike
|
Predicted negative |
required |
protected
|
ArrayLike
|
An array of booleans identifying the protected class |
required |
control
|
ArrayLike
|
An array of booleans identifying the control class |
required |
sample_weight
|
Optional[ArrayLike]
|
Sample weights, set to 1 if None Version Added 0.2.0 |
None
|
Returns:
Type | Description |
---|---|
float
|
Adverse Impact Ratio (AIR) |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
|
adverse_impact_ratio_at_thresholds(y_score, protected, control, sample_weight=None, thresholds=None, strategy='auto')
Computes the Adverse Impact Ratio (AIR) at each threshold of y_score
. See
rapidstats.metrics.adverse_impact_ratio for more details. When the strategy
is
cum_sum
, computes
for t in y_score:
is_predicted_negative = y_score < t
adverse_impact_ratio(is_predicted_negative, protected, control)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_score
|
ArrayLike
|
Predicted scores |
required |
protected
|
ArrayLike
|
An array of booleans identifying the protected class |
required |
control
|
ArrayLike
|
An array of booleans identifying the control class |
required |
sample_weight
|
Optional[ArrayLike]
|
Sample weights, set to 1 if None Version Added 0.2.0 |
None
|
thresholds
|
Optional[list[float]]
|
The thresholds to compute |
None
|
strategy
|
LoopStrategy
|
Computation method, by default "auto" |
'auto'
|
Returns:
Type | Description |
---|---|
DataFrame
|
A DataFrame of |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
|
average_precision(y_true, y_score, sample_weight=None)
Computes Average Precision.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
ArrayLike
|
Ground truth target |
required |
y_score
|
ArrayLike
|
Predicted scores |
required |
sample_weight
|
Optional[ArrayLike]
|
Sample weights, set to 1 if None Version Added 0.2.0 |
None
|
Returns:
Type | Description |
---|---|
float
|
Average Precision (AP) |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 |
|
brier_loss(y_true, y_score)
Computes the Brier loss (smaller is better). The Brier loss measures the mean squared difference between the predicted scores and the ground truth target. Calculated as:
where \( yt \) is y_true
and \( ys \) is y_score
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
ArrayLike
|
Ground truth target |
required |
y_score
|
ArrayLike
|
Predicted scores |
required |
Returns:
Type | Description |
---|---|
float
|
Brier loss |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
|
confusion_matrix(y_true, y_pred, beta=1.0, sample_weight=None)
Computes confusion matrix metrics (TP, FP, TN, FN, TPR, Fbeta, etc.).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
ArrayLike
|
Ground truth target |
required |
y_pred
|
ArrayLike
|
Predicted target |
required |
beta
|
float
|
\( \beta \) to use in \( F_\beta \), by default 1 |
1.0
|
sample_weight
|
Optional[ArrayLike]
|
Sample weights, set to 1 if None Version Added 0.2.0 |
None
|
Returns:
Type | Description |
---|---|
ConfusionMatrix
|
Dataclass of confusion matrix metrics |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
confusion_matrix_at_thresholds(y_true, y_score, thresholds=None, metrics=DefaultConfusionMatrixMetrics, strategy='auto', beta=1.0, sample_weight=None)
Computes the confusion matrix at each threshold. When the strategy
is
"cum_sum", computes
for t in y_score:
y_pred = y_score >= t
confusion_matrix(y_true, y_pred)
using fast DataFrame operations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
ArrayLike
|
Ground truth target |
required |
y_score
|
ArrayLike
|
Predicted scores |
required |
thresholds
|
Optional[list[float]]
|
The thresholds to compute |
None
|
metrics
|
Iterable[ConfusionMatrixMetric]
|
The metrics to compute, by default DefaultConfusionMatrixMetrics |
DefaultConfusionMatrixMetrics
|
strategy
|
LoopStrategy
|
Computation method, by default "auto" |
'auto'
|
beta
|
float
|
\( \beta \) to use in \( F_\beta \), by default 1 |
1.0
|
sample_weight
|
Optional[ArrayLike]
|
Sample weights, set to 1 if None Version Added 0.2.0 |
None
|
Returns:
Type | Description |
---|---|
DataFrame
|
A Polars DataFrame of |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
|
max_ks(y_true, y_score)
Performs the two-sample Kolmogorov-Smirnov test on the predicted scores of the ground truth positive and ground truth negative classes. The KS test measures the highest distance between two CDFs, so the Max-KS metric measures how well the model separates two classes. In pseucode:
df = Frame(y_true, y_score)
class0 = df.filter(~y_true)["y_score"]
class1 = df.filter(y_true)["y_score"]
ks(class0, class1)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
ArrayLike
|
Ground truth target |
required |
y_score
|
ArrayLike
|
Predicted scores |
required |
Returns:
Type | Description |
---|---|
float
|
Max-KS |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
mean(y)
Computes the mean of the input array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y
|
ArrayLike
|
A 1D-array of numbers |
required |
Returns:
Type | Description |
---|---|
float
|
Mean |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
mean_squared_error(y_true, y_score)
Computes Mean Squared Error (MSE) as
where \( yt \) is y_true
and \( ys \) is y_score
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
ArrayLike
|
Ground truth target |
required |
y_score
|
ArrayLike
|
Predicted scores |
required |
Returns:
Type | Description |
---|---|
float
|
Mean Squared Error (MSE) |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
|
predicted_positive_ratio_at_thresholds(y_score, sample_weight=None, thresholds=None, strategy='auto')
Computes the Predicted Positive Ratio (PPR) at each threshold, where the PPR is
the ratio of predicted positive to the total, and a positive is defined as
y_score
>= threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_score
|
ArrayLike
|
Predicted scores |
required |
sample_weight
|
Optional[ArrayLike]
|
Sample weights, set to 1 if None Version Added 0.2.0 |
None
|
thresholds
|
Optional[list[float]]
|
The thresholds to compute |
None
|
strategy
|
LoopStrategy
|
Computation method, by default "auto" |
'auto'
|
Returns:
Type | Description |
---|---|
DataFrame
|
A DataFrame of |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
|
r2(y_true, y_score)
Computes R2 as
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
ArrayLike
|
Ground truth target |
required |
y_score
|
ArrayLike
|
Predicted scores |
required |
Returns:
Type | Description |
---|---|
float
|
R2 |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 |
|
roc_auc(y_true, y_score, sample_weight=None)
Computes Area Under the Receiver Operating Characteristic Curve.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
ArrayLike
|
Ground truth target |
required |
y_score
|
ArrayLike
|
Predicted scores |
required |
sample_weight
|
Optional[ArrayLike]
|
Sample weights, set to 1 if None Version Added 0.2.0 |
None
|
Returns:
Type | Description |
---|---|
float
|
ROC-AUC |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
|
root_mean_squared_error(y_true, y_score)
Computes Root Mean Squared Error (RMSE) as
where \( yt \) is y_true
and \( ys \) is y_score
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
ArrayLike
|
Ground truth target |
required |
y_score
|
ArrayLike
|
Predicted scores |
required |
Returns:
Type | Description |
---|---|
float
|
Root Mean Squared Error (RMSE) |
Added in version 0.1.0
Source code in python/rapidstats/metrics.py
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
|