Metrics
ConfusionMatrix
dataclass
Result object returned by rapidstats.confusion_matrix
Attributes:
Name | Type | Description |
---|---|---|
tn |
float
|
↑Count of True Negatives; y_true == False and y_pred == False |
fp |
float
|
↓Count of False Positives; y_true == False and y_pred == True |
fn |
float
|
↓Count of False Negatives; y_true == True and y_pred == False |
tp |
float
|
↑Count of True Positives; y_true == True, y_pred == True |
tpr |
float
|
↑True Positive Rate, Recall, Sensitivity; Probability that an actual positive will be predicted positive; \( \frac{TP}{TP + FN} \) |
fpr |
float
|
↓False Positive Rate, Type I Error; Probability that an actual negative will be predicted positive; \( \frac{FP}{FP + TN} \) |
fnr |
float
|
↓False Negative Rate, Type II Error; Probability an actual positive will be predicted negative; \( \frac{FN}{TP + FN} \) |
tnr |
float
|
↑True Negative Rate, Specificity; Probability an actual negative will be predicted negative; \( \frac{TN}{FP + TN} \) |
prevalence |
float
|
Prevalence; Proportion of positive classes; \( \frac{TP + FN}{TN + FP + FN + TP} \) |
prevalence_threshold |
float
|
Prevalence Threshold; \( \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR} \) |
informedness |
float
|
↑Informedness, Youden's J; \( TPR + TNR - 1 \) |
precision |
float
|
↑Precision, Positive Predicted Value (PPV); Probability a predicted positive was actually correct; \( \frac{TP}{TP + FP} \) |
false_omission_rate |
float
|
↓False Omission Rate (FOR); Proportion of predicted negatives that were wrong \( \frac{FN}{FN + TN} \) |
plr |
float
|
↑Positive Likelihood Ratio, LR+; \( \frac{TPR}{FPR} \) |
nlr |
float
|
Negative Likelihood Ratio, LR-; \( \frac{FNR}{TNR} \) |
acc |
float
|
↑Accuracy (ACC); Probability of a correct prediction; \( \frac{TP + TN}{TN + FP + FN + TP} \) |
balanced_accuracy |
float
|
↑Balanced Accuracy (BA); \( \frac{TP + TN}{2} \) |
f1 |
float
|
↑F1; Harmonic mean of Precision and Recall; \( \frac{2 \times PPV \times TPR}{PPV + TPR} \) |
folkes_mallows_index |
float
|
↑Folkes Mallows Index (FM); \( \sqrt{PPV \times TPR} \) |
mcc |
float
|
↑Matthew Correlation Coefficient (MCC), Yule Phi Coefficient; \( \sqrt{TPR \times TNR \times PPV \times NPV} - \sqrt{FNR \times FPR \times FOR \times FDR} \) |
threat_score |
float
|
↑Threat Score (TS), Critical Success Index (CSI), Jaccard Index; \( \frac{TP}{TP + FN + FP} \) |
markedness |
float
|
Markedness (MP), deltaP; \( PPV + NPV - 1 \) |
fdr |
float
|
↓False Discovery Rate, Proportion of predicted positives that are wrong; \( \frac{FP}{TP + FP} \) |
↑npv |
float
|
Negative Predictive Value; Proportion of predicted negatives that are correct; \( \frac{TN}{FN + TN} \) |
dor |
float
|
Diagnostic Odds Ratio; \( \frac{LR+}{LR-} \) |
ppr |
float
|
Predicted Positive Ratio; Proportion that are predicted positive; ( \frac{TP + FP}{TN + FP + FN + TP}) |
pnr |
float
|
Predicted Negative Ratio; Proportion that are predicted negative; ( \frac{TN + FN}{TN + FP + FN + TP}) |
Source code in python/rapidstats/_metrics.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
to_polars()
Convert the dataclass to a long Polars DataFrame with columns metric
and
value
.
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with columns |
Source code in python/rapidstats/_metrics.py
160 161 162 163 164 165 166 167 168 169 170 171 |
|
adverse_impact_ratio(y_pred, protected, control)
Computes the Adverse Impact Ratio (AIR), which is the ratio of negative predictions for the protected class and the control class. The ideal ratio is 1. For example, in an underwriting context, this means that the model is equally as likely to approve protected applicants as it is unprotected applicants, given that the model score is probability of bad.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_pred |
ArrayLike
|
Predicted negative |
required |
protected |
ArrayLike
|
An array of booleans identifying the protected class |
required |
control |
ArrayLike
|
An array of booleans identifying the control class |
required |
Returns:
Type | Description |
---|---|
float
|
Adverse Impact Ratio (AIR) |
Source code in python/rapidstats/_metrics.py
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|
adverse_impact_ratio_at_thresholds(y_score, protected, control, thresholds=None, strategy='auto')
Computes the Adverse Impact Ratio (AIR) at each threshold of y_score
. See
rapidstats.adverse_impact_ratio for more details. When the strategy
is
cum_sum
, computes
for t in y_score:
is_predicted_negative = y_score < t
adverse_impact_ratio(is_predicted_negative, protected, control)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_score |
ArrayLike
|
Predicted scores |
required |
protected |
ArrayLike
|
An array of booleans identifying the protected class |
required |
control |
ArrayLike
|
An array of booleans identifying the control class |
required |
thresholds |
Optional[list[float]]
|
The thresholds to compute |
None
|
strategy |
LoopStrategy
|
Computation method, by default "auto" |
'auto'
|
Returns:
Type | Description |
---|---|
DataFrame
|
A DataFrame of |
Source code in python/rapidstats/_metrics.py
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|
brier_loss(y_true, y_score)
Computes the Brier loss (smaller is better). The Brier loss measures the mean squared difference between the predicted scores and the ground truth target. Calculated as:
where \( yt \) is y_true
and \( ys \) is y_score
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
ArrayLike
|
Ground truth target |
required |
y_score |
ArrayLike
|
Predicted scores |
required |
Returns:
Type | Description |
---|---|
float
|
Brier loss |
Source code in python/rapidstats/_metrics.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
confusion_matrix(y_true, y_pred)
Computes confusion matrix metrics (TP, FP, TN, FN, TPR, F1, etc.).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
ArrayLike
|
Ground truth target |
required |
y_pred |
ArrayLike
|
Predicted target |
required |
Returns:
Type | Description |
---|---|
ConfusionMatrix
|
Dataclass of confusion matrix metrics |
Source code in python/rapidstats/_metrics.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
|
confusion_matrix_at_thresholds(y_true, y_score, thresholds=None, metrics=DefaultConfusionMatrixMetrics, strategy='auto')
Computes the confusion matrix at each threshold. When the strategy
is
"cum_sum", computes
for t in y_score:
y_pred = y_score >= t
confusion_matrix(y_true, y_pred)
using fast DataFrame operations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
ArrayLike
|
Ground truth target |
required |
y_score |
ArrayLike
|
Predicted scores |
required |
thresholds |
Optional[list[float]]
|
The thresholds to compute |
None
|
metrics |
Iterable[ConfusionMatrixMetric]
|
The metrics to compute, by default DefaultConfusionMatrixMetrics |
DefaultConfusionMatrixMetrics
|
strategy |
LoopStrategy
|
Computation method, by default "auto" |
'auto'
|
Returns:
Type | Description |
---|---|
DataFrame
|
A Polars DataFrame of |
Source code in python/rapidstats/_metrics.py
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
|
max_ks(y_true, y_score)
Performs the two-sample Kolmogorov-Smirnov test on the predicted scores of the ground truth positive and ground truth negative classes. The KS test measures the highest distance between two CDFs, so the Max-KS metric measures how well the model separates two classes. In pseucode:
df = Frame(y_true, y_score)
class0 = df.filter(~y_true)["y_score"]
class1 = df.filter(y_true)["y_score"]
ks(class0, class1)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
ArrayLike
|
Ground truth target |
required |
y_score |
ArrayLike
|
Predicted scores |
required |
Returns:
Type | Description |
---|---|
float
|
Max-KS |
Source code in python/rapidstats/_metrics.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
|
mean(y)
Computes the mean of the input array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
ArrayLike
|
A 1D-array of numbers |
required |
Returns:
Type | Description |
---|---|
float
|
Mean |
Source code in python/rapidstats/_metrics.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
mean_squared_error(y_true, y_score)
Computes Mean Squared Error (MSE) as
where \( yt \) is y_true
and \( ys \) is y_score
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
ArrayLike
|
Ground truth target |
required |
y_score |
ArrayLike
|
Predicted scores |
required |
Returns:
Type | Description |
---|---|
float
|
Mean Squared Error (MSE) |
Source code in python/rapidstats/_metrics.py
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
|
predicted_positive_ratio_at_thresholds(y_score, thresholds=None, strategy='auto')
Computes the Predicted Positive Ratio (PPR) at each threshold, where the PPR is
the ratio of predicted positive to the total, and a positive is defined as
y_score
>= threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_score |
ArrayLike
|
Predicted scores |
required |
thresholds |
Optional[list[float]]
|
The thresholds to compute |
None
|
strategy |
LoopStrategy
|
Computation method, by default "auto" |
'auto'
|
Returns:
Type | Description |
---|---|
DataFrame
|
A DataFrame of |
Source code in python/rapidstats/_metrics.py
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
roc_auc(y_true, y_score)
Computes Area Under the Receiver Operating Characteristic Curve.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
ArrayLike
|
Ground truth target |
required |
y_score |
ArrayLike
|
Predicted scores |
required |
Returns:
Type | Description |
---|---|
float
|
ROC-AUC |
Source code in python/rapidstats/_metrics.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
|
root_mean_squared_error(y_true, y_score)
Computes Root Mean Squared Error (RMSE) as
where \( yt \) is y_true
and \( ys \) is y_score
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
ArrayLike
|
Ground truth target |
required |
y_score |
ArrayLike
|
Predicted scores |
required |
Returns:
Type | Description |
---|---|
float
|
Root Mean Squared Error (RMSE) |
Source code in python/rapidstats/_metrics.py
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
|